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INTRODUCTION

Experience and engineering judgment form the basic foundation
for designing sampling programs. Collection of accurate field
data is required for verification of constituent (pollutant)
dispersion predictions. However, the complexity of the disg-
persal phenomenon precludes the design of optimal sampling
strategies based upon only qualitative analyses; more substan-
tial quantitative analyses are required. '

The most informative sampling strategy would require the
collection of samples covering the entire spatial and temporal
domains of the particular problem at sufficiently small spatial
and temporal intervals to ensure the identification of all
important information. A greatly reduced number of samples is
usually collected due to the imposition of cost constraints.

In such cases, decisions must be reached as to which samples are,
and which are not, to be collected. The importance of such
decisions is magnified in short-term field sampling pro-

grams. In long-term monitoring programs, one has the capabil-



ity of altering the initial strategy to improve its effective—
ness as data becomes available. Due to the relatively short
duration of typical field sampling programs {(e.g., tracer
experiments), they must be designed before the start of the

" sampling effort, since the results of sampling are not usually
available until after the commencement of the field program.
Thus it is desirable that a methodology be made available

to assist in the designing of effective sampling programs.

Only within the last few years have quantitative'methodologies
for determining spatial and temporal sampling intervals begun
to appear in the technical literature. The particular
methodology of interest is based upon the concepts of Estima-
tion Theory (specifically, Kalman-Bucy filtering): "Estimation
Theory refers to a variety of statistical techniques developed
for determining best approximations of unknown quantities from
observations (data) which are recognized as being imperfect,
i.e., containing uncertainty. Kalman-Bucy filtering is a
technique available for the estimation of the states of a
system by the sequential extraction of information from data,
as the data becomes available. It has been employed success—
fully in the field of navigation and guidance of spacecraft
since the mid 1960's, and several investigators have recently
attempted to apply these concepts to envirommental pellution
problems. Moore [1973] applied filtering techniques to
determine the minimum monitoring frequency of certain water
quality constituents for a simulated river system. Brewer and
Moore {1974] extended the work of Moore [1973] to include the
problem of determining the water quality constituent to be
sampled and their spatial locations. Although Desalu [1974]
did not directly address the monitoring design problem, he
jllustrated the applicability of Estimation Theory to such

air pollution problems as: i) estimation of the three-
dimensional distribution of pollutant cecncentrations from ob-
served data, ii) identification of the diffusion coefficient
and other model parameters and iii) identification of the major
sources of air pollution. Pimentel [1975] illustrated that a
simplified formulation results when measurements are made
infrequently. This approach required ignoring the advection of -
the constituent; only diffusion is considered, an assumption
unsuitable for estuarine areas. In addition, the important
guestion of what is the maximum rate of sampling that can be
considered as infrequent was not addressed.

A common deficiency of the above studies is the lack of effort
directed at quantifying the modeling uncertainty. Although
filtering concepts are straightforward, difficulty arises in
their application. A major difficulty is the quantification
of the modeling uncertainty. Lettenmaier [1975] considers
uncertainties in tributaries, waste sources and certain param—
eters in his approach to design of river wmonitoring programs



for detection of water quality trends. The use of a steady-
state one-dimensional model and temporally constant uncertainty
statistics severely restricts its usefulness. The work of
Dandy [1976] appears to be the most complete study published
to date. He considers the design of riverine monitoring pro-
grams using a one-dimensional transient model of the advection
of water quality constituents. Modeling uncertainty due to
randomly varying streamflow, tributary discharges, and waste
sources is considered. However, he neglects constituent dis-
persion and model parameter uncertainties, and uses a simpli—
fied representation of the hydrodynamies.

In this paper, the analytical framework for applying Kalman—
Bucy filtering to dispersion in a coastal water body is
developed. Particular emphasis is placed on quantification of the
model uncertainty due to model parameters, source loadings, and
velocity fields. The formulation is discretized with the
Finite Element Method, and a number of comparison studies are
presented.

. b
In what follows, we outline first the filtering strategy, then
describe briefly the Finite Element implementation, and
lastly discuss some examples.

FILTERING CONCEPTS

Consider a linéar, discrete mathematical model of the following
form:

Xeesar) = 2o iy P )

wvhere

is a n-dimensional system state vector

is a n x n dimensional state transition matrix

is a n-dimensional vector of known deterministic inputs
is a n x n dimensional factor matrix of the deterministic
input vector

a n—-dimensional vector of model uncertainty having .

zero mean and covariance QM » as designated by

(0,Q ) (t)
M(t)

represents the array evaluated at time t+At

tm~€ter|nd

=
M
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( )t+At
{ )t represents the array evaluated at time t

At is the time increment

The state-space model form of Equation 1 allows the calculation
of the system state vector at time t + At from the system state
vector at time t. Since © is independent of X » the model
is linear in the independéﬁg)variable X . It'Eétzlso discrete,
as opposed to continuvous, since it a11;6g)the computation of the
dependent system state vector at only discrete times {temporally



spaced At units of time apart). The deterministic model would
not normally include the last term, £ - It is included here
to signify the uncertainty in the res&fls predicted by the
deterministic model. Specification of a zero mean model uncer-—
tainty defines an unbiased model. 1f the model is biased, and
the value of the bias is known, the model uncertainty can be
represented by a deterministic bias and a zero mean random CON-
tribution.

Consider next, the following linear, discrete form of the ob-
servations:

Zey T Boto T U @

where

E(t) is a m-dimensional vector of field observations

H(t) is a m x n dimensional observation matrix -

i{t) is a m-dimensional vector of observation uncertainty
having zero mean and covariance Q , as designated
by (O’QO ) o(t) )

- ()

The observation matrix, B , designates the locations at which
the data is collected. Agtzach time step, a new observation ma-
trix may be formulated, with the number of rows corresponding to
the number of observatioms at that time. For each row, zeros
(0's) appear in all columns except the column corresponding to

a node of sampling; in this column, a one (1) is placed. For
example, if only node 2 is measured in a . node system, the
observation array will be:

[0 1 0 0]

Information from the model and observations can be combined by
Kalman-Bucy filtering, as presented by Gelb [1974), Jazwinski
[1970]1, and Schweppe [1973]. The first stage of the filter (i.e.,
prediction state) entails the extrapolation of both the state
estimates and the system error covariances forward in time to the
next discrete time point using the system model of Equatiom 1.
Assuming that the model uncertainty is uncorrelated in time, the
predicted system error covariance is:

T

Lt ~ 2o falnde T )

(r)

where
is a n x n dimensional predicted system erroxr
covariance matrix evaluated at time t+Af, given
measurements only up to and including time t-
Z(t[t) is a n x n dimensional updated system error covariance
- matrix evaluated at time t, given measurements up -
to and including time t

E (st t)



The above expression emphasizes that the system uncertainties

are propagated through the model in a way analogous to the system
states themselves. The model error covariance, QM ), arises

due to the error introduced in the propagation of the system
errors from one time step to the next by use of the model state
transition matrix.

The updated system states are obtained from the predicted sys-
tem states and a linear weighting of the difference between
the predicted system values and the observations as:

-~

Xeernr) = Zierar) T Xean) [E(:+Ac)‘5(c+zst)5(t+ast)] )

where,. -
z{t+ﬁt) is the n-dimensional vector of updated system

states

Since minimum variance system state estimates are desirei,
that weighting function is computed which minimizes the trace
of the predicted error covariance matrix. This weighting
function, specifically called the Kalman gain matrix, is:
o T T -1
2 I
§(t+ﬂt) E(t+&t|t)§(t+ﬁt)[g(t+ﬁt)-(t+ﬁt|t)g(t+ﬁt)+qo(t+ﬂt)]
5
where _
E(t+ﬂt)

¢ )1 indicates the inverse of the given array

is the n x m dimensional Ralman gain matrix

( )T indicates the transpose of the given array

It is seen from Equation 5 that the Kalman gain matrix is
computed from the weighting of the uncertainties in the predic-
ted system values and the observations. With such, the updated
system uncertainty is computed from:

[T (6)

E(t+ﬂt|t+ﬂt) ST §(t+bt)§(t+ﬂt)]§(t+ﬂt]t)
where

I is an n x n dimensional identity matrix



From the above, it is seen that the updated system error co-
variances can only be less than or equal to the predicted sys-
tem error covariances. With perfect data, the system error
covariances are reduced to zero at the locations of sampling.
With uninformative data, the updated system error covariances
will correspond exactly to the predicted system error covariances.
An extremely important characteristic of the system error co-
variance update is its independence of the actual data values;
only the statistics of the data uncertainty are required. This
property allows the system error covariances to be computed
before the data is made available, and thus, can be made to
assist in the design of data collection programs.

To summarize the filtering process and computationmal require-
ments, the filter equations are presented in the flowchart of
Figure 1. Whether data is available or not, the predicted
system states and system error covariances must be calculated
at each time step; the major computational cost of the filter
is incurred here. In actuality, the computational difficulty
and cost of filtering depends on whether the errors are yhite
or colored (temporally invariant or correlated), and on
whether the system is linear or nonlinear. The filtering al-
gorithm presented here has made use of simplifying assumptions
appropriate for linear system dynamics and temporally uncorre-
lated errors. For more detailed descriptions of filtering,
the reader is referred to the works of Gelb [1974], Jazwinski
[1970], and Schweppe [1973].

DETERMINISTIC DISPERSION MODEL

The deterministic model employed here is a vertically averaged
two-dimensional finite element discretization which is applicable
when the velocity and concentration vary slowly over the water
colum, i.e., for well mixed conditions. We have restricted the
treatment to a vertically averaged formulation since our objective
was to investigate the computational feasibility of applying
filtering techniques and a three—-dimensional treatment would be
premature at this time.

Integrating the general convective diffusion equation over the
water column results in the following governing equation
(see Leimkuhler [1974] for details):

2 3 (3 2 (3 - _3 5 _ & p e o
T Cc + = {v ) + 3y (v C) x Qx 3y Qy + Si + SS + Sb (N
where

C is the depth integrated concentration,

C=pch

p is the mass demnsity of the constituent and water mixture
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c, u, v are the depth-averaged values of concentration and
horizontal velocity components
h is the total height of water columm
Si is the constituent mass input rate per unit projected area
SS, Sb are the normal source loading flux components through
the surface and bottom of the water column

The flux terms are approximated with isotropic Fickian disper—
sion expressions, o

oc
=-ph ce 8
Qx P Ex,y ox (8
_ 3¢
Ov—-—phE = (9
X.Yay .
where E is the isotropic dispersion coefficient

For the par%igular case of settling of discrete particles (e-g-,
sphalerite tracer particles, suspended sediment, etc.), the
source and sink terms are simplified by assuming a first order
decay rate due to the settling velocity of the particles,and
constant concentration through the layer. This yields
-

S, +8 +5§ =8, -pw ¢ (10)

where L is the particle settling velocity.

For coastal problems, the concentration is specified as C = D on
the ocean boundary when the boundary is far from the plume. - The
normal dispersive flux is specified as Q_ = 0 along the land
boundary. If the plume intersects the ocean boundary, the normal
dispersive flux can be prescribed as being equal to zerc provided
that the concentration is constant outside the domain.

Equation (7) is transformed to its symmetrical weak form and the
Finite Element spatial discretization is applied. The details
are presented by Leimkuhler, et al (1975), and we list here only
the final form of the goVerning egquation: '

%)

M%-C+A-C+E _+K-C+w_-D-C-5+F=0 (1)

~ ot — X,¥
where A contains the advective terms, K defines the dispersion
component, D refers to decay, § contains the source loading, and
F represents the dispersive boundary flux term.

5

The trapezium method is employed to propagate the solution in
time. In the deterministic case, the scheme is relatively inex-
pensive since the state transition matrix, ¢, does not have to be
generated. However, it is required for the covariance propagation
If advection is treated with the “pure' trapezium, the generation
of ¢ would require matrix factorization at each time step. To
rediice this effort, an Eulerian approximation for advection is’
introduced and the solution is propogated with



M+5- (B - K+w - D) I,

At 2 &
- At - A Y +—(8 + S )
-n'-n 2 —+1 n(lZ)
where .
( j)n designates the given array evaluated at the discrete
time point, tn
At is the time increment

The Euler approximation for advection decreases the stabiliFy
limit but this is usually not a problem for coastal dispersion.



QUANTIFICATION OF DISPERSION MODELING UNCERTAINTY

The major effort required in applying Kalman-Bucy filtering to
coastal dispersion problems is quantification of the modeling
uncertainty. Since coastal dispersion generally involves a
large number of unknowns, only a first-order uncertainty analysis
is feasible. In first-order analyses, each variable is consid-
ered to be a random function in which the mean represents the
best estimate of the variable, and the variance gquantifies the
uncertainty in the estimate.

To compute the uncertainty in the predicted concentratioms,
due to parameter and input uncertainties, the dererministic
model is expanded in a Taylor series about the mean values of
the variables. Retaining only first-order terms, results in
the following equation which defines the propagation of the
uncertainty in concentration:

At .
1+ =5 (B o K+ -DE

-2 (5 k4w "D)-at-AlC
- 2 X,y - s . ~t7 — t
At =%,y ~ L

- = *RK+w "D)+

Py T R4 D) oartAd G
% (imt Kt "D Cigae

- t+AE 7

At 2 z

+ = [®), + (8),,,] (13)

where ( )t represents the uncertainty in the given variable at
time t

Our representation of the model parameters and inputs is
equivalent to considering the uncertainty about the mean
value as a zero mean process. The isotropic dispersion co-
ef ficient and first—order decay rate uncertainties are inter-
preted as

£ & (0, 0 %,9)

- 2
W, (o, a, )
s



where Gi represents the variance of the uncertainty in the
variable x

Representation of the model inputs uncertainty creates more
difficulty. For multi-location source discharges, each dis-
charge would normally have its own characteristic level of
uncertainty. However, to simplify,the loading is expressed
in terms of a single loading parameter and a vector defining
the spatial distribution of the loading as,

where
At is the loading parameter
R .1is a vector describing the geographic locations of
the loadings

If only one source location exists, such as in most tracer field
experiments, the above expression is exact. The uncertainty

in the loading parameter is represented as a random function
with zero mean and prescribad wvariance,

A, " (0, 0,9
’ t

where .
lt is the source loading uncertainty

% 2 is the variance of the source loading uncertainty

t

The flexibility of handling temporally and spatially variant
velocity fields creates difficulty in representation of the
advection field uncertainty. Our approach is based on form—
ulating the uncertainty at the element level similar to the
formulation of the element advection matrix of the determin-
istic dispersion model.

Equation 13 shows that the effect of velocity uncertainty on
the uncertainty of the predicted model concentrations is
determined from

[¥ + MEL(Ex,y' F * Vs ?)] Et+At = At ft Et (14)



The advection uncertainty term is decomposed into influence
matrices and vectors of the x and y component velocity field
uncertainties as

N (u) ° vy '
- ] - = . -
AL~ A - C A u +A TV, 1s)
where u is the vector of x component velocity field uncer-

tainties
v 1is the vector of y component velocity field uncer-

tainties

Using Equations 14 and 15, the following factor matrices can
be defined (details are presented in DeGuida [1976]):

?u;t - [g * ég'(Ex,Y' 5 + ws' 9)]-1 'é(:) (16)
by e T B A—E By ¥tvge 1.})]_1' ‘f‘(‘;) 17

Collecting the various uncertainty contributicns, the two-
dimensional model uncertainty expands to:

Covnr = b, vear &
+ 7. + Y .
Ext iE i Et+At QE AL
XY X,y
+w . +w_ . -4
St . 'éﬂs,t st+ﬁt ws,t'{'ﬁt

t ‘2 A,t + A tHAt " ® A, t+AL

+ X

- -

+ ¢ R B A (18)
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?u,t and ?v,t are as defined in Equations 16 and 17.

The propagation of the variance is obtained by squaring the
uncertainty and taking the expected value. The two-dimension-
al form is, assuming stationary random processes (i.e., time
invariant statistics of the uncertainty) (see DeGuida [1976]):

r = T ¢l
~o,trat - Yo, tar Lot Te,tHAt

2 T T
to X, ¥ [iE st jP-E »E + iE LEHAL ia L tHAL
E X ¥ X,y X,¥ X,y
T T T
+
Ooerat 22 e 85 0@ eracds o0 )]
X, XY x,¥ X,y

T T

2
+ o, [iw,tiw,t+iw,t-i’ﬁtiw ,tHAL
s 5 s s



T T LT
+ (fc,tﬂst %,t Q"s’t) * cfc,tﬂ\t ius,t -Qw,t) ]

S

2 T T
LN B N g by st

T T.T
o SN N N @ tear He Bt >3

, T T
+ ?u,t Eu fu,t + ?v,t Ev ?ﬁ,t | (19)

where

r is the variance of the model predicted concentra-
€t {jons at time t

r is the variance of the x—directional depth averaged
velocity components '

r is the variance of the y—directional depth averaged
velocity components :

SAMPLING EFFECTIVENESS DETERMINATION

Once the modeling uncertainty is quantified, a Kalman filter-
ing algorithm is developed to quantify the effectiveness of
sampling, as has been shown by previous investigators (e.g.,
Moore (1973), Brewer and Moore (1974), Pimentel (1975), and
Dandy (1976)). With Kalman filtering, all that needs to be
specified for the update of the system uncertainty are the
observation matrices defining the locations of measurements
in time and the statistics of the uncertainty in those
measurements. If an estimate of the measurement uncertainty
is available, the system uncertainty can be propagated in
time, considering different observation matrices, i.e.,
different sampling strategies. Comparing the system un-
certainty allows one to evaluate the potential effectiveness
of various sampling strategies before the actuwal experiment
is performed.

In designing sampling strategies by Kalman filtering, care-
ful analysis is required in defining the observation matrices.
The formulation as stated is entirely general, such that an
infinite number of possible sampling networks (i.e., defini-
tion of the time-variant spatial locations of sampling) can
be analyzed, if so desired. However, specific characteris-
tics of each problem will normally limit the possible number



of sampling strategies to be tested. Of concern might be
such factors as budgets allotted for sampling, required

level of information from sampling, restricted sampling days
and/or hours of sampling {e.g., only sunlight hours), politi-'
cal boundaries, certain legal aspects, and so on. All these
factors, and many more, will probably influence the selection
of possible sampling strategies. Of extreme importance here
is the use of experience in sampling and engineering judgment.

For observations to be informative, the uncertainty of the ob-
servations must be less than the uncertainty in the predicted
concentrations, i.e., the updated system uncertainty must be
less than the predicted system uncertainty. It is therefore
natural to choose the sampling strategy of minimum system
uncertainty (i.e., the minimum system error covariance
matrix). However, as the duration of time increases after

the last observation has been made, the system uncertainty
increases until finally no reduction in the system uncertain-
ty is noticed. Therefore, at different times, different
neasures of the effectiveness of sampling would be obtained.
To compute the sampling effectiveness over the entire time
duration of the experiment, the reduction in the system error
covariance matrix (i.e., predicted system error covariance
matrix minus updated system error covariance matrix) is calcu—
lated at each time a sample is collected. Since the majority
of the reduction occurs in the uncertain variances (i.e.,
diagonal elements of the system error covariance matrix), only
the reductions in the trace are computed. Summation over time
of these component reductions leads to a total measure of
sampling effectiveness. Maximization of the total reductions
of the system uncertainty is therefore an appropriate measure
of sampling effectiveness for the specific problem of tracer
experiments.

Some may criticize the previcusly described optimality criter—
ion for the simplistic way of defining the feasible set of
sampling strategies, i.e., observation matrices. In reality,
even though a particular sampling strategy may not satisfy

all the constraints, the penalty incurred in the constraint
violation may be so small that the design will be more effec-—
tive than all the others tested which satisfy the imposed
constraints. These problems can be avoided by the definition
of a utility function which could be made to reflect the value
of sampling in light of all the complicating factors. The
criterion for determining the most effective sampling network
would be that network which maximizes the expected utility.
Such a maximization of the expected utility has become a
traditional objective in Bayesian statistical decision theory.

A major disadvantage of defining the sampling effectiveness as



maximization of the expected utility i1s the difficulty of ex-
pressing the utility in mathematical form. It is often very
difficult to quantify certain characteristics of the problem;
it may be practically feasible for only very special cases.
Therefore, in light of the necessity to develop simpler eval-
uation criteria, evaluvation of only feasible sampling strate-
gies, as previously described, appears to be the most appro-
priate for the purposes of this study.

RESULTS

For purposes of illustrating the usefulness of the filtering
algorithm for evaluating sampling effectiveness, some results
for the one—dimensional modeling of a channel are presented
first. The finite element grid used is shown in Figure 2.

A constant depth of 1 meter is used. Contaminant is contin-
vously injected at the source node. Zerc concentrations are
specified at the extreme ends of the grid (i.e., at x = 0 and
X = 3 meters). A time increment of 0.1 seconds is used in
the model. The mean values and standard deviations of the
model parameters and inputs are:

Parameter Mean Value Standard Deviation
longitudinal

dispersion co-= 2 2
efficient 0.01 meters” /sec 0.005 meters /sec

first order decay
rate 0.2/sec 0.1/sec

Tnput

longitudinal flow
velocity 0.05 meters/sec 0.01 meters/sec

continuous source
loading rate 1 gram/sec 0.1 gram/sec

In addition, the standard deviation of the measurement
uncertainty is taken as 0.0l grams/meters.

Examination of the deterministic solution shows that the peak
concentration occurs at the source location. Therefore, the
first sampling strategy evaluated consisted of sampling at the
source discharge location (nede 9 in Figure 2) every second
after the start of discharge. Since the trace of the error
covariance matrix is the desired measure of sampling effec-
tiveness, a plet of the trace cof the error covariance matrix
versus time is presented in Figure 3. The solid line in the
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figure represents the modeling uncertainty (i.e., system un-
certainty with no measurements); the dashed line represents
the system uncertainty as measurements are taken. Each
weasurement reduces the system uncertainty at the time of

- measurement. However, as time progresses, the system un-
certainty increases, but not quite to the level corresponding
to no measurement. This indicates that the measurements are
informative. A measure of their value is the total reduction
in system uncertainty over time.

Figure 4 shows the variation of system uncertainty with dis-
tance from the source. The sclid line defines the standard
deviation of the system uncertainty immediately before the
measurement is taken at 10 seconds; the dashed line is the
"corrected" distribution. The effect of the measurement is
quite local, reducing the system uncertainty to essentially
the measurement uncertainty at the observation point but
diminishing rapidly away from the source.

Figure 5 illustrates the effect of sampling every second after
the start of discharge at the source node and half a meter
downstream (i.e., nodes 9 and 13), as measured by the trace

of the error covartance matrix. Figure 6 shows the reduction
of the system uncertainty as a function of distance from the
source at 10 seconds after start of discharge. The additional
downstream observation point reduces the covariance trace,

and also incréases the spatial extent of the correction. The
effect of increasing the sampling frequency while sampling at
only the source node is illustrated by comparing Figures 3 -
and 7. Figure 7 illustrates the effect of taking a sample
every half second.

Considerable interest in the Massachusetts Bay environment

has been expressed in connection with a once proposed offshore
sand and gravel dredging project called NOMES (New England
Offshore Mining Environmental Study). Such interest has moti-
vated this study, and it seemed logical to attempt a simula-
tion of the NOMES dispersion experiment.

The finite element grid of Massachusetts Bay is shown in
Figure 8. The ability to use elements of different sizes and
shapes affords the flexibility required to model such complex
geomstric confilgurations as Massachusetts Bay. The dump site
of tracer particles (sphalerite) is indicated by the starred
area. Depths at the nodal points are taken from the Coast and
Geodetic Survey bathymetric chart 0808N-50.

Velocity time histories were generated with a two-dimensional
finite element circulation model, CAFE (Circulation Analyses
by Finite Elements) (see Wang and Connor [1975]) using simu-~
lated tidal input and actual wind conditions collected during
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Figure 8 Finite Element Grid of Massachusetts Bay



the time peried of the experiment.

In the NOMES experiment, approximately 1200 1bs. of sphalerite
particles (mean diameter of approximately 5 microns; esti-
mated 2.9 x 1013 particles) were dumped in a small area to
simulate a point source discharge. Discharge began approx-
imately one hour before low tide and lasted for approximately
10 minutes. Certain approximations are required in the math-
ematical modeling of the discharge. In the numerical simula-
tion, it is necessary to take the duration of discharge equal
to at least one time increment. (The time increment used in
the dispersion model is 900 seconds.) In addition, although
the discharge was essentially a point source, the source has
to be distributed over a larger area (starred in Figure 8) imn
order to reduce the high concentration gradients which intro-
duce numerical difficulties. In addition, the finite element
grid is refined in the general discharge area for the same
reason. Due to the spreading of the source over larger
spatial and temporal scales, initial spreading is expected to
be greater for the numerical results than in the actual ex-
periment. With increasing time, this discrepancy should
vanish.

The first order decay rate due to particle settling is ob-
tained from Stoke's Law and assuming a uniform concentra-
tion profile over the water column depth as 3.3 x 1073
meters/sec. The isotropic dispersion coefficient is chosen
as 30 meterszfsec (Pearce and Christodoulou [1975)).

Sensitivity of the dispersion medel to uncertainty in the
dispersion coefficient is addressed. Taking the standard
deviation of the isotropic dispersion Eoefficient as 50X of
the mean value (i.e., gpX,Y= 15 meters”/sec), the effect on
the predicted concentrations is shown in Figure 9 for a time
of 12 hours after dump. Since dispersion is influenced by

the concentration gradient, larger concentration uncertainties
are expected in regions of steep concentration gradients. )
This is confirmed by the results shown.

Figure 10 illustrates the model sensitivity to a standard
deviation of the decay rate equal to 50X of the mean value
(i.e., Oug = 1.65 x 10~ meters/sec) at a time of 30 hours
after dump. The model is observed to be less sensitive to a
50Z of mean value standard deviation of the decay rate un-
certainty than the dispersion uncertainty. The largest
effect of the decay rate uncertainty is observed at the high-

est concentrations, as is expected.

The extent of application of the filtering algorithm for
quantifying sampling effectiveness at the NOMES site was
severely restricted by the high computational cost. For
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simulating the experiment for two full prototype days, the
50 state variable problem (see Figure 8) is required, but
the computational problem is much too large for extensive
simulation.

Given computational cost constraints, only one hypothetical
sampling strategy was evaluated. Sampling was initiated at
9:00a.m. on the day following the dump (i.e., corresponding
model time step 88). Samples were collected at the model
source loading nodes every hour, until the completion of the
sampling day at 4:00p.m. (i.e., corresponding to model time
step 116). For purposes of presentaticn, the modeling un-—
certainty was computed from the uncertainty in the decay rate
only. Figure 11 illustrates the effectiveness of the defined
sampling strategy. In this figure, one observes the reduction
in the system uncertainty due to the sampling effort. An in~
teresting result is the very slow increase of the system un-—
certainty after the completion of sampling. Unfortunately,
due to computational cost constraints, it was not possible

to calculate the time duration after which no effect of the
sampling would be felt.

CONCLUSIONS

Although a limited computer budget restricted the application
to the NOMES experiment in Massachusetts Bay, these applica-~

tions and extensive applications of the one—dimensional form-
ulation have provided useful information on its computational
costs and applicability.

The assessment of sampling effectiveness is made possible by
filtering techniques. It allows the investigation of altered
spatial and temporal frequency of sampling. However, the
methodology does have limitations. One of the most critical
is the requirement of the state-space representation of the
system dynamics. Models are not generally developed in this
form, due to the computational efficiency of other solution
forms and the non—intuitive nature of the state-space form.

Although computation of the meodeling uncertainty due to un-—
certainty in the dispersion ccefficient, decay rate, velocity
field, and source loading is presented, other uncertainty
sources are not included. Uncertainty arises from assump-
tions made in the model formulation itself, which is diffiecult
to quantify. For example, models are imperfect due to the
assumptions of the applicability of Fickian diffusion and
representation of naturally variant three-dimensional water
bodies by lower dimensional models. Fhysical discretization
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of the continuous problem, both spatially and temporally,
introduces numerical errors. By refining the grid and re-
ducing the time increment, more accurate results are obtained,
but at the expense of increased computational costs. In
addition, round-off error can have significant effect on
modeling results, but uafortunately has not received much
attention.

The major reason for not including the effect on the modeling
uncertainty of the above factors is the increased computation-
al cost required. As is, calculation of the modeling uncer-
tainty due to uncertainty in the parameters and inputs is
costly for large systems., Calculation of the one-dimensional
modeling uncertainty tock roughly about 2 minutes of CPU time
on an IBM 370 model 168 computer for a simulation of 21 nodes
for 100 time steps. In comparison, calculation of the two-
dimensional modeling uncertainty in application to Massachus-
etts Bay (neglecting uncertainty in the velocity field) took
roughly 90 minutes of CPU time on the same computer for a
simulation of 50 nodes for 144 time steps. Therefore, for
large systems, the cost of computing the modeling uncertain-
ty does become excessive; the additional cost of the Kalman
filtering algorithm is insignificant.

An especially important conclusion of this study is the
necessity to quantify the modeling uncertainty by a relatively
detailed analysis. Many previous investigators (e.g., Moore
(1973), Brewer and Moore (1974) and Pimentel (1975)) have ob-
tained constant values of the modeling uncertainty based ’
strictly upon subjective judgment. This practice is not ad-
visable, as this work has shown the large spatial and tem—
poral variability of the modeling uncertainty.

The tradeoff between computational cost and accuracy inm quan-
tifying the modeling uncertainty is evident. For simplistic
one-dimensional modeling attempts, the relatively low
computational cost justifies detailed modeling uncertainty
analyses. The modeling uncertainty due to model assump-
tions, physical discretizations, round-off error, etc., should
be addressed. On the other hand, difficulty in justifying

the excessive computational costs of two—dimensional modeling
of a Massachusetts Bay size problem exists. Although it is
felt that the investment made in the simulation of a field
experiment before it is actually performed will pay for itself
in the higher return of information, the initial capital out-
lay for computational time may deter the use of such a method-
ology. Cheaper methods of calculating the modeling uncertain-
ty are needed.
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